

How can cells have the same DNA but different sets of proteins?

Genes are regulated independently of one another.

In a given cell, the expression of some genes is "on" while other genes are "off". Different cells express different sets of genes at different times.

The BIG Questions...

How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions?

(b) 14 weeks.

(c) 20 weeks.

Evolution of gene regulation

Prokaryotes

- single-celled
- evolved to grow & divide rapidly
- must respond quickly to changes in external environment

exploit transient resources

Gene regulation

- turn genes on & off rapidly flexibility & reversibility
- adjust levels of enzymes for synthesis & digestion

Evolution of gene regulation

Eukaryotes

multicellular

- evolved to maintain constant internal conditions while facing changing external conditions
 - homeostasis
- regulate body as a whole growth & development
 - long term processes

specialization

turn on & off large number of genes

must coordinate the body as a whole rather than serve the needs of individual cells

Points of control

The control of gene expression can occur at any step in the pathway from gene to functional protein

- 1. packing/unpacking DNA
- 2. transcription
- 3. mRNA processing
- 4. mRNA degredation
- 5. translation
- 6. protein processing
- 7. protein degradation

How does each (#1-7) control gene expression?

(1 sentence description)

(Ex: #4 mRNA gets degraded faster if it's not needed. siRNA can silence genes (meaning it turns genes off).)

1. DNA packing

How do you fit all that DNA into nucleus?

- DNA coiling & folding
 - double helix nucleosomes chromatin fiber looped domains chromosome

from DNA double helix to condensed chromosome

(d) Metaphase chromosome

Nucleosomes

"Beads on a string"

- Ist level of DNA packing
- histone proteins
 8 protein molecules
 positively charged amino acids
 bind tightly to negatively charged DNA

8 histone

molecules

DNA packing as gene control

Degree of packing of DNA regulates transcription

tightly wrapped around histones

no transcription

genes turned off

- <u>heterochromatin</u> darker DNA (H) = tightly packed
- euchromatin

lighter DNA (E) = loosely packed

DNA methylation

Methylation of DNA blocks transcription factors

no transcription

- → genes turned off
- attachment of methyl groups (–CH₃) to cytosine
 C = cytosine
- nearly permanent inactivation of genes
 - ex. inactivated mammalian X chromosome = Barr body

Histone acetylation

Acetylation of histones unwinds DNA

- Ioosely wrapped around histones
 - enables transcription
 - genes turned on
- attachment of acetyl groups (–COCH₃) to histones

conformational change in histone proteins

transcription factors have easier access to genes Core of eight active/open chromatin

inactive/condensed chromatin

Model for Enhancer action

3. mRNA processing (Post-transcriptional control) Alternative RNA splicing • variable processing of exons creates a family of protein:

4. Regulation of mRNA degradation

Life span of mRNA determines amount of protein synthesis

mRNA can last from hours to weeks

RNA processing movie

RNA interference **Small interfering RNAs (siRNA)** short segments of RNA (21-28 bases) bind to mRNA create sections of double-stranded mRNA "death" tag for mRNA triggers degradation of mRNA • cause gene "silencing" post-transcriptional control turns off gene = no protein produced siRNA

5. Control of translation

Block initiation of translation stage

- regulatory proteins attach to 5' end of mRNA prevent attachment of ribosomal subunits & initiator tRNA
 - block translation of mRNA to protein

Control of translation movie

6-7. Protein processing & degradation

Protein processing

 folding, cleaving, adding sugar groups, targeting for transport

Protein degradation

- <u>ubiquitin</u> tagging
- proteasome degradation

1980s | 2004

Ubiquitin

"Death tag"

- mark unwanted proteins with a label
- ◆ 76 amino acid polypeptide, <u>ubiquitin</u>
- labeled proteins are broken down rapidly in "waste disposers"

<u>proteasomes</u>

Aaron Ciechanover

Avram Hershko Israel

Irwin Rose UC Riverside

Proteasome

Protein-degrading "machine"

- cell's waste disposer
- breaks down any proteins into 7-9 amino acid fragments

cellular recycling

play Nobel animation

67	Gene Regulation
	1 & 2
5	3 & 4
4	
	5
	6 & 7
3	